2.11 The Laplacian

85

2.11 The Laplacian

We have now met two scalar functions related to the electric field, the
potential function ¢ (see Eq. (2.16)) and the divergence, div E. In Carte-
sian coordinates the relationships are expressed as follows:

a a ad
E=—grad¢ = — P y—¢ +292 , (2.66)
ax ay 0z
oE JdE, OE
divE = — + 2 + —=, (2.67)
ox ay 0z
Equation (2.66) shows that the x component of E is E;, = —0d¢/dx.

Substituting this and the corresponding expressions for £, and E; into
Eq. (2.67), we get a relation between div E and ¢:

. : ¢ %9 %9
leE = —d1vgrad¢ = — (@ + W + a—Z2> . (268)
The operation on ¢ that is indicated by Eq. (2.68), except for the minus
sign, we could call “div grad,” or “taking the divergence of the gradient

of ... The symbol used to represent this operation is V2, called the
Laplacian operator, or just the Laplacian. The expression
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is the prescription for the Laplacian in Cartesian coordinates. So we have

divE = —V?¢ (2.70)

The notation V? is explained as follows. With the vector operator V
given in Eq. (2.60), its square equals
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(2.71)

the same as the Laplacian in Cartesian coordinates. So the Laplacian is
often called “del squared,” and we say ‘“del squared ¢,” meaning “div
grad ¢.” Warning: In other coordinate systems, spherical coordinates,
for instance, the explicit forms of the gradient operator and the Laplacian
operator are not so simply related. This is evident in the list of formulas at
the beginning of Appendix F. It is well to remember that the fundamental
definition of the Laplacian operation is “divergence of the gradient of.”
We can now express directly a local relation between the charge
density at some point and the potential function in that immediate
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neighborhood. Combining Eq. (2.70) with Gauss’s law in differential
form, divE = p/€p, we have

v =-L 2.72)

€0

Equation (2.72), sometimes called Poisson’s equation, relates the charge
density to the second derivatives of the potential. Written out in Cartesian
coordinates it is

3’9 9 9?

09 9 0 _ P (2.73)

0x2  9yr 92 €0
One may regard this as the differential expression of the relationship
expressed by the integral in Eq. (2.18), which tells us how to find the
potential at a point by summing the contributions of all sources near
and far.*

Example (Poisson’s equation for a sphere) Let’s verify that Eq. (2.72)
holds for the potential due to a sphere with radius R and uniform charge density
p. This potential was derived in the second example in Section 2.2. Spherical
coordinates are the best choice here, so we will invoke the expression for the
Laplacian in spherical coordinates, given in Eq. (F.3) in Appendix F. Since the
potential depends only on r, we have Vip = (1/;’2)E)(r2 d¢/or)/or.

The potential outside the sphere is ¢ = oR3/ 3egr. All that matters here is
the fact that ¢ is proportional to 1/r, because this makes d¢ /dr proportional to
1/ r2, from which we immediately see that V2¢ = 0. This agrees with Eq. (2.72),
because p = 0 outside the sphere.

Inside the sphere, we have ¢ = ,oR2 /2€0 — pr2 /6€q. The constant term
vanishes when we take the derivative, so we have

19 (5,0 19 - 1 pr?
Vz‘f’:i* r27¢ =—— (7 or =—fpi=—£, (2.74)
r2 or ar r2 or 3¢ 2 € €0

as desired.

2.12 Laplace’s equation
Wherever p =0, that is, in all parts of space containing no electric charge,
the electric potential ¢ has to satisfy the equation

V2 = 0. (2.75)

This is called Laplace’s equation. We run into it in many branches of
physics. Indeed one might say that from a mathematical point of view the

4 In fact, it can be shown that Eq. (2.73) is the mathematical equivalent of Eq. (2.18).
This means, if you apply the Laplacian operator to the integral in Eq. (2.18), you will
come out with —p /€. We shall not stop to show how this is done; you’ll have to take
our word for it or figure out how to do it in Problem 2.27.
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theory of classical fields is mostly a study of the solutions of this equa-
tion. The class of functions that satisfy Laplace’s equation are called har-
monic functions. They have some remarkable properties, one of which is
the following.

Theorem 21  [f ¢ (x,y,7) satisfies Laplace’s equation, then the aver-
age value of ¢ over the surface of any sphere (not necessarily a small
sphere) is equal to the value of ¢ at the center of the sphere.

Proof We can easily prove that this must be true of the electric potential
¢ in regions containing no charge. (See Section F.5 in Appendix F for a
more general proof.) Consider a point charge ¢ and a spherical surface
S over which a charge ¢’ is uniformly distributed. Let the charge g be
brought in from infinity to a distance R from the center of the charged
sphere, as in Fig. 2.27. The electric field of the sphere being the same as
if its total charge ¢’ were concentrated at its center, the work required is
qq' /4meoR.

Now suppose, instead, that the point charge g was there first and the
charged sphere was later brought in from infinity. The work required for
that is the product of ¢’ and the average over the surface S of the potential
due to the point charge g. Now the work is surely the same in the second
case, namely gq' /4w €gR, so the average over the sphere of the potential
due to g must be g/4mwegR. That is indeed the potential at the center of
the sphere due to the external point charge ¢. That proves the assertion
for any single point charge outside the sphere. But the potential of many
charges is just the sum of the potentials due to the individual charges,
and the average of a sum is the sum of the averages. It follows that the
assertion must be true for any system of sources lying wholly outside
the sphere. O

This property of the potential, that its average over an empty sphere
is equal to its value at the center, is closely related to the following fact
that you may find disappointing.

Theorem 2.2 (Earnshaw’s theorem) It is impossible to construct an
electrostatic field that will hold a charged particle in stable equilibrium
in empty space.

This particular “impossibility theorem,” like others in physics, is
useful in saving fruitless speculation and effort. We can prove it in two
closely related ways, first by looking at the field E and using Gauss’s
law, and second by looking at the potential ¢ and using the above fact
concerning the average of ¢ over the surface of a sphere.

Proof First, suppose we have an electric field in which, contrary to the
theorem, there is a point P at which a positively charged particle would
be in stable equilibrium. That means that any small displacement of the
particle from P must bring it to a place where an electric field acts to push
it back toward P. But that means that a little sphere around P must have E

Figure 2.27.

The work required to bring in ¢’ and distribute it
over the sphere is ¢’ times the average, over the
sphere, of the potential ¢ due to g.
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pointing inward everywhere on its surface, which in turn means that there
is a net inward flux through the sphere. This contradicts Gauss’s law, for
there is no negative source charge within the region. (Our charged test
particle doesn’t count; besides, it’s positive.) In other words, you can’t
have an empty region where the electric field points all inward or all
outward, and that’s what you would need for stable equilibrium. Note
that since this proof involved only Gauss’s law, we could have presented
this theorem back in Chapter 1.

A second proof, using Theorem 2.1, proceeds as follows. A stable
position for a charged particle must be one where the potential ¢ is
either lower than that at all neighboring points (if the particle is posi-
tively charged) or higher than that at all neighboring points (if the parti-
cle is negatively charged). Clearly neither is possible for a function whose
average value over a sphere is always equal to its value at the center. [

Of course, one can have a charged particle in equilibrium in an elec-
trostatic field, in the sense that the force on it is zero. The point where
E = 01in Fig. 1.10 is such a location. The position midway between two
equal positive charges is an equilibrium position for a third charge, either
positive or negative. But the equilibrium is not stable. (Think what hap-
pens when the third charge is slightly displaced, either transversely or
longitudinally, from its equilibrium position.) It is possible, by the way,
to trap and hold stably an electrically charged particle by electric fields
that vary in time. And it is certainly possible to hold stably a charged par-
ticle within a nonzero charge distribution. For example, a positive charge
located at the center of a solid sphere of uniform negative charge is in
stable equilibrium.

2.13 Distinguishing the physics from the
mathematics
In the preceding sections we have been concerned with mathematical
relations and new ways of expressing familiar facts. It may help to sort
out physics from mathematics, and law from definition, if we try to imag-
ine how things would be if the electric force were not a pure inverse-
square force but instead a force with a finite range, for instance, a force
varying like’
—Ar

F(r)="° (2.76)

P2
Then Gauss’s law in the integral form expressed in Eq. (2.50) would
surely fail, for, by taking a very large surface enclosing some sources, we
would find a vanishingly small field on this surface. The flux would go to
zero as the surface expanded, rather than remain constant. However, we

5 This force technically has an infinite range, but the exponential decay causes it to
become essentially zero far away. So the range is finite, for all practical purposes.
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could still define a field at every point in space. We could calculate the
divergence of that field, and Eq. (2.51), which describes a mathematical
property of any vector field, would still be true. Is there a contradiction
here? No, because Eq. (2.52) would also fail. The divergence of the field
would no longer be the same as the source density. We can understand
this by noting that a small volume empty of sources could still have a net
flux through it owing to the effect of a source outside the volume, if the
field has finite range. As suggested in Fig. 2.28, more flux would enter
the side near the source than would leave the volume.

Thus we may say that Eqs. (2.50) and (2.52) express the same physi-
cal law, the inverse-square law that Coulomb established by direct meas-
urement of the forces between charged bodies, while Eq. (2.51) is an
expression of a mathematical theorem that enables us to translate our
statement of this law from differential to integral form or the reverse. The
relations that connect E, p, and ¢ are gathered together in Fig. 2.29(a).
The analogous expressions in Gaussian units are shown in Fig. 2.29(b).

How can we justify these differential relations between source and
field in a world where electric charge is really not a smooth jelly but
is concentrated on particles whose interior we know very little about?
Actually, a statement like Eq. (2.72), Poisson’s equation, is meaningful
on a macroscopic scale only. The charge density p is to be interpreted as
an average over some small but finite region containing many particles.
Thus the function p cannot be continuous in the way a mathematician
might prefer. When we let our region V; shrink down in the course of
demonstrating the differential form of Gauss’s law, we know as physicists
that we musn’t let it shrink too far. That is awkward perhaps, but the fact
is that we make out very well with the continuum model in large-scale

Figure 2.28.
In a non-inverse-square field, the flux through a
closed surface is not zero.

Figure 2.29.

(a) How electric charge density, electric
potential, and electric field are related. The
integral relations involve the line integral and the
volume integral. The differential relations involve
the gradient, the divergence, and div - grad
(equivalently V2), the Laplacian operator. The
charge density p is in coulomb/meter3, the
potential ¢ is in volts, the field E is in volt/meter,
and all lengths are in meters. (b) The same
relations in Gaussian units. The charge density
p is in esu/cm?, the potential ¢ is in statvolts, the
field E is in statvolt/meter, and all lengths are in
centimeters.

(a) Electric field (b) Electric field
E E
1 P A , _ p 2 ’ —
= 4n€0fr—2rdv E=-V¢ E—/ﬁrdv E=-V¢
p=€ V+E (D=—/E'ds P—EV'E ¢o=—|Eeds
Charge P ¢ Electric Charge  p ¢ Electric
density potential density potential
1 o p .
—_eV? _ 1 /ﬁd ' =——V :/—dv
p=-6V'0 b= |70 p=-1-V9 o= |
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Figure 2.30.

For the subdivided loop, the sum of all the
circulations I'; around the sections is equal to
the circulation I" around the original curve C.

electrical systems. In the atomic world we have the elementary particles,
and vacuum. Inside the particles, even if Coulomb’s law turns out to
have some kind of meaning, much else is going on. The vacuum, so far
as electrostatics is concerned, is ruled by Laplace’s equation. Still, we
cannot be sure that, even in the vacuum, passage to a limit of zero size
has physical meaning.

2.14 The curl of a vector function

Note: Study of this section and the remainder of Chapter 2 can be post-
poned until Chapter 6 is reached. Until then our only application of the
curl will be the demonstration that an electrostatic field is characterized
by curlE = 0, as explained in Section 2.17. The reason we are intro-
ducing the curl now is that the derivation so closely parallels the above
derivation of the divergence.

We developed the concept of divergence, a local property of a vector
field, by starting from the surface integral over a large closed surface.
In the same spirit, let us consider the line integral of some vector field
F(x,y,7), taken around a closed path, some curve C that comes back
to join itself. The curve C can be visualized as the boundary of some
surface S that spans it. A good name for the magnitude of such a closed-
path line integral is circulation; we shall use I' (capital gamma) as its
symbol:

r— / F.ds. 2.77)
C

In the integrand, ds is the element of path, an infinitesimal vector locally
tangent to C (Fig. 2.30(a)). There are two senses in which C could be
traversed; we have to pick one to make the direction of ds unambiguous.
Incidentally, the curve C need not lie in a plane — it can be as crooked as
you like.

Now bridge C with a new path B, thus making two loops, C; and C»,
each of which includes B as part of itself (Fig. 2.30(b)). Take the line inte-
gral around each of these, in the same directional sense. It is easy to see
that the sum of the two circulations, I'; and I'», will be the same as the
original circulation around C. The reason is that the bridge is traversed in
opposite directions in the two integrations, leaving just the contributions
that made up the original line integral around C. Further subdivision into
many loops, Cy,...,Ci,...,Cy, leaves the sum unchanged:

N N
/F.dSZZ/ F.ds, o T=)»T; (2.78)
c i=1 Y Ci i=1
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In the same manner as in our discussion of divergence in Section 2.8,
we can continue indefinitely to subdivide, now by adding new bridges
instead of new surfaces, seeking in the limit to arrive at a quantity char-
acteristic of the field F in a local neighborhood. When we subdivide
the loops, we make loops with smaller circulation, but also with smaller
area. So it is natural to consider the ratio of loop circulation to loop
area, just as we considered in Section 2.8 the ratio of flux to volume.
However, things are a little different here, because the area a; of the bit
of surface that spans a small loop C; is really a vector (Fig. 2.30(c)), in
contrast with the scalar volume V; in Section 2.8. A surface has an orien-
tation in space, whereas a volume does not. In fact, as we make smaller
and smaller loops in some neighborhood, we can arrange to have a loop
oriented in any direction we choose. (Remember, we are not committed
to any particular surface over the whole curve C.) Thus we can pass to
the limit in essentially different ways, and we must expect the result to
reflect this.

Let us choose some particular orientation for the patch as it goes
through the last stages of subdivision. The unit vector n will denote the
normal to the patch, which is to remain fixed in direction as the patch
surrounding a particular point P shrinks down toward zero size. The limit
of the ratio of circulation to patch area will be written this way:

Y Jo, F-ds
lim — or lim —/———.
ai—0 a; a;i—0 a;

(2.79)
The rule for sign is that the direction of f and the sense in which C;
is traversed in the line integral shall be related by a right-hand-screw
rule, as in Fig. 2.31. The limit we obtain by this procedure is a scalar
quantity that is associated with the point P in the vector field F, and
with the direction fi. We could pick three directions, such as X, ¥, and z,
and get three different numbers. It turns out that these numbers can be
considered components of a vector. We call the vector “curl F.” That is
to say, the number we get for the limit with i in a particular direction is
the component, in that direction, of the vector curl F. To state this in an
equation,

F-ds
(curl F) - A = lim fca— (2.80)
i i

where n is the unit vector normal to the curve C;.
For instance, the x component of curl F is obtained by choosing n =
X, as in Fig. 2.32. As the loop shrinks down around the point P, we keep

=>

Figure 2.31.
Right-hand-screw relation between the surface
normal and the direction in which the circulation

line integral is taken.

X

Figure 2.32.
The patch shrinks around P, keeping its normal
pointing in the x direction.



92

The electric potential

it in a plane perpendicular to the x axis. In general, the vector curl F
will vary from place to place. If we let the patch shrink down around
some other point, the ratio of circulation to area may have a different
value, depending on the nature of the vector function F. That is, curl F is
itself a vector function of the coordinates. Its direction at each point in
space is normal to the plane through this point in which the circulation
is a maximum. Its magnitude is the limiting value of circulation per unit
area, in this plane, around the point in question.

The last two sentences might be taken as a definition of curl F. Like
Eq. (2.80) they make no reference to a coordinate frame. We have not
proved that the object so named and defined is a vector; we have only
asserted it. Possession of direction and magnitude is not enough to make
something a vector. The components as defined must behave like vec-
tor components. Suppose we have determined certain values for the x, y,
and z components of curl F by applying Eq. (2.80) with n chosen, suc-
cessively, as X, ¥, and z. If curl F is a vector, it is uniquely determined
by these three components. If some fourth direction is now chosen for
n, the left side of Eq. (2.80) is fixed and the quantity on the right, the
circulation in the plane perpendicular to the new h, had better agree with
it! Indeed, until one is sure that curl F is a vector, it is not even obvi-
ous that there can be at most one direction for which the circulation per
unit area at P is maximum — as was tacitly assumed in the latter defi-
nition. In fact, Eq. (2.80) does define a vector, but we shall not give a
proof of that.

2.15 Stokes’ theorem
From the circulation around an infinitesimal patch of surface we can now
work back to the circulation around the original large loop C:

N N T
r:fF-ds=Zr,-=Za,»<a—’>. (2.81)
c 1 i

i=1

In the last step we merely multiplied and divided by a;. Now observe
what happens to the right-hand side as N is made enormous and all the
a; areas shrink. From Eq. (2.80), the quantity in parentheses becomes
(curl F) - n;, where n; is the unit vector normal to the ith patch. So we
have on the right the sum, over all patches that make up the entire surface
S spanning C, of the product “patch area times normal component of
(curl F).” This is simply the surface integral, over S, of the vector curl F:

N
F.
Zai (—l) = Zai(curl F) -n, — /curlF - da, (2.82)
‘ a; Py S

i=1
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because da = a;n;, by definition. We thus find that

/ F-ds = / curl F - da (Stokes’ theorem). (2.83)
c s

The relation expressed by Eq. (2.83) is a mathematical theorem
called Stokes’ theorem. Note how it resembles Gauss’s theorem, the di-
vergence theorem, in structure. Stokes’ theorem relates the line integral of
a vector to the surface integral of the curl of the vector. Gauss’s theorem,
Eq. (2.49), relates the surface integral of a vector to the volume integral
of the divergence of the vector. Stokes’ theorem involves a surface and
the curve that bounds it. Gauss’s theorem involves a volume and the
surface that encloses it.

2.16 The curl in Cartesian coordinates

Equation (2.80) is the fundamental definition of curl F, stated without
reference to any particular coordinate system. In this respect it is like
our fundamental definition of divergence, Eq. (2.47). As in that case, we
should like to know how to calculate curl F when the vector function
F(x,y, z) is explicitly given. To find the rule, we carry out the integration
called for in Eq. (2.80), but we do it over a path of very simple shape,
one that encloses a rectangular patch of surface parallel to the xy plane
(Fig. 2.33). That is, we are taking i = z. In agreement with our rule
about sign, the direction of integration around the rim must be clockwise
as seen by someone looking up in the direction of fi. In Fig. 2.34 we look
down onto the rectangle from above.

The line integral of A around such a path depends on the variation
of A, with y and the variation of A, with x. For if A, had the same aver-
age value along the top of the frame, in Fig. 2.34, as along the bottom
of the frame, the contribution of these two pieces of the whole line inte-
gral would obviously cancel. A similar remark applies to the side mem-
bers. To the first order in the small quantities Ax and Ay, the difference
between the average of A, over the top segment of path at y + Ay and its
average over the bottom segment at y is

(an> Ay. (2.84)
dy

This follows from an argument similar to the one we used with
Fig. 2.22(b):

Ay =A(x,y) + 5 ox bottom of frame

Ax 9A, +A 0Ax ( at midpoint of

Ax = Ax(x»y) + 7 ox Yy 8)/ tOp of frame

Ax dA, ( at midpoint of )

) . (2.85)

\

1V S M M

Figure 2.33.
Circulation around a rectangular patch with
n=2z

(x+ Ax, y + Ay)

I |

(x, y)

'\
f

Figure 2.34.
Looking down on the patch in Fig. 2.33.
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Figure 2.35.

For each orientation, the limit of the ratio
circulation/area determines a component of

curl A at that point. To determine all components
of the vector curl A at any point, the patches
should all cluster around that point; here they
are separated for clarity.

These are the average values referred to, to first order in the Taylor expan-
sion. It is their difference, times the length of the path segment Ax, that
determines their net contribution to the circulation. This contribution is
—Ax Ay (0A,/9y). The minus sign comes in because we are integrat-
ing toward the left at the top, so that if A, is more positive at the top,
it results in a negative contribution to the circulation. The contribution
from the sides is Ay Ax (0A,/dx), and here the sign is positive, because
if A, is more positive on the right, the result is a positive contribution to
the circulation.

Thus, neglecting any higher powers of Ax and Ay, the line integral
around the whole rectangle is

0A, 0A,
A-ds=—Ax- Ay+ Ay-| — | Ax
ay x
0A, 0A
=AxAy| =2 - ).
0x ay

(2.86)

Now Ax Ay is the magnitude of the area of the enclosed rectangle, which
we have represented by a vector in the z direction. Evidently the quantity

0A 0A
— = (2.87)
ox dy
is the limit of the ratio
line int; 1 d patch
ine integral around patc (2.88)

area of patch

as the patch shrinks to zero size. If the rectangular frame had been ori-
ented with its normal in the positive y direction, like the left frame in
Fig. 2.35, we would have found the expression

0A,  0A,
0z ax

(2.89)

for the limit of the corresponding ratio. And if the frame had been ori-
ented with its normal in the positive x direction, like the right frame in
Fig. 2.35, we would have obtained

94; 34y (2.90)
ay 9z ’

Although we have considered rectangles only, our result is actually
independent of the shape of the little patch and its frame, for reasons
much the same as in the case of the integrals involved in the diver-
gence theorem. For instance, it is clear that we can freely join different
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rectangles to form other figures, because the line integrals along the
merging sections of boundary cancel one another exactly (Fig. 2.36).

We conclude that, for any of these orientations, the limit of the ratio
of circulation to area is independent of the shape of the patch we choose.
Thus we obtain as a general formula for the components of the vector
curl F, when F is given as a function of x, y, and z:

oF, OF oF, OF oF, OF
curlF=%x(— - —2)+¥ o)+ 2 - ).
dy 0z 0z ax ax ay

(2.91)

You may find the following rule easier to remember than the formula
itself. Make up a determinant like this:

A A A

X y Z
3/dx 9/dy 3/dz |. (2.92)
F. F, F,

Expand it according to the rule for determinants, and you will get curl F
as given by Eq. (2.91). Note that the x component of curl F depends on
the rate of change of F, in the y direction and the negative of the rate of
change of Fy in the z direction, and so on.

The symbol V x, read as “del cross,” where V is interpreted as the
“vector”

V=%—+§—+2— (2.93)
Z

is often used in place of the name curl. If we write V x F and follow
the rules for forming the components of a vector cross product, we get
automatically the vector curl F. So curl F and V x F mean the same thing.

2.17 The physical meaning of the curl

The name curl reminds us that a vector field with a nonzero curl has
circulation, or vorticity. Maxwell used the name rotation, and in German
a similar name is still used, abbreviated rot. Imagine a velocity vector
field G, and suppose that curl G is not zero. Then the velocities in this
field have something of this character:

@
Choor 1
N <«

Figure 2.36.

The circulation in the loop on the right is the
sum of the circulations in the rectangles, and
the area on the right is the sum of the
rectangular areas. This diagram shows why the
circulation/area ratio is independent of shape.
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Figure 2.37.
The curlmeter.

superimposed, perhaps, on a general flow in one direction. For instance,
the velocity field of water flowing out of a bathtub generally acquires a
circulation. Its curl is not zero over most of the surface. Something float-
ing on the surface rotates as it moves along. In the physics of fluid flow,
hydrodynamics and aerodynamics, this concept is of central importance.

To make a “curlmeter” for an electric field — at least in our imagi-
nation — we could fasten positive charges to a hub by insulating spokes,
as in Fig. 2.37. Exploring an electric field with this device, we would
find, wherever curl E is not zero, a tendency for the wheel to turn around
the shaft. With a spring to restrain rotation, the amount of twist could
be used to indicate the torque, which would be proportional to the com-
ponent of the vector curl E in the direction of the shaft. If we can find
the direction of the shaft for which the torque is maximum and clock-
wise, that is the direction of the vector curl E. (Of course, we cannot
trust the curlmeter in a field that varies greatly within the dimensions of
the wheel itself.)

What can we say, in the light of all this, about the electrostatic field
E? The conclusion we can draw is a simple one: the curlmeter will always
read zero! That follows from a fact we have already learned; namely, in
the electrostatic field the line integral of E around any closed path is
zero. Just to recall why this is so, remember from Section 2.1 that the line
integral of E between any two points such as P; and P, in Fig. 2.38 is
independent of the path. (This then implies that E can be written as
the negative gradient of the well-defined potential function given by
Eq. (2.4).) As we bring the two points P; and P; close together, the line
integral over the shorter path in the figure obviously vanishes — unless
the final location is at a singularity such as a point charge, a case we
can rule out. So the line integral must be zero over the closed loop in
Fig. 2.38(d). But now, if the circulation is zero around any closed path,
it follows from Stokes’ theorem that the surface integral of curl E is zero
over a patch of any size, shape, or location. But then curl E must be zero
everywhere, for if it were not zero somewhere we could devise a patch in
that neighborhood to violate the conclusion. We can sum all of this up
by saying that if E equals the negative gradient of a potential function ¢
(which is the case for any electrostatic field E), then

curlE =0 (everywhere). (2.94)

The converse is also true. If curl E is known to be zero everywhere, then
E must be describable as the gradient of some potential function ¢. This
follows from the fact that zero curl implies that the line integral of E
is path-independent (by reversing the above reasoning), which in turn
implies that ¢ can be defined in an unambiguous manner as the nega-
tive line integral of the field. If curl E = 0, then E could be an electro-
static field.
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Example This test is easy to apply. When the vector function in Fig. 2.3 was
first introduced, it was said to represent a possible electrostatic field. The compo-
nents were specified by Ex = Ky and Ey, = Kx, to which we should add E; = 0 to
complete the description of a field in three-dimensional space. Calculating curl E
we find

JdE. JoE.
(cullE)y = — — — —,
ay 0z
dEx  OE,
1E)y = — — — =0,
e P
IEy  JEx
(curlE); = — - — =K—-K=0. (2.95)
ax ay

This tells us that E is the (negative) gradient of some scalar potential, which
we know from Eq. (2.8), and which we verified in Eq. (2.17), is ¢ = —Kxy.
Incidentally, this particular field E happens to have zero divergence also:

9Ey 0E, OE,

OEx —0. (2.96)
dx dy 0z

It therefore represents an electrostatic field in a charge-free region.
On the other hand, the equally simple vector function defined by Fy = Ky;
Fy = —Kx; F; = 0, does not have zero curl. Instead,

(curl F), = —2K. (2.97)

Hence no electrostatic field could have this form. If you sketch roughly the form
of this field, you will see at once that it has circulation.

Example (Field from a sphere) We can also verify that the electric field
due to a sphere with radius R and uniform charge density p has zero curl. From
the example in Section 1.11, the fields inside and outside the sphere are, respec-
tively,

out __ pR3

. r
in_ 27 and EM = 5
360r

"7 3¢

(2.98)

As usual, we will work with spherical coordinates when dealing with a sphere.
The expression for the curl in spherical coordinates, given in Eq. (F.3) in
Appendix F, is unfortunately the most formidable one in the list. However, the
above electric field has only a radial component, so only two of the six terms
in the lengthy expression for the curl have a chance of being nonzero. Further-
more, the radial component depends only on r, being proportional to either r or
1/ r2. So the two possibly nonzero terms, which involve the derivatives dE;/d¢
and 0E,/d6, are both zero (¢ here is an angle, not the potential!). The curl is
therefore zero. This result holds for any radial field that depends only on r. The
particular  and 1/ r2 forms of our field are irrelevant.

You can develop some feeling for these aspects of vector functions
by studying the two-dimensional fields pictured in Fig. 2.39. In four of

(b)

(@) i \
P
P

1
Py
b P,
1@
(©) P,
Pl@
(d)
PP,
Figure 2.38.
If the line integral between P and P; is

independent of path, the line integral around a
closed loop must be zero.
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Figure 2.39.

Four of these vector fields have zero divergence
in the region shown. Three have zero curl. Can
you spot them?
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¥ \1 / o e .
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these fields the divergence of the vector function is zero throughout the
region shown. Try to identify the four. Divergence implies a net flux
into, or out of, a neighborhood. It is easy to spot in certain patterns.
In others you may be able to see at once that the divergence is zero.
In three of the fields the curl of the vector function is zero throughout
the region shown. Try to identify the three by deciding whether a line
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(@) (®) ©
~ The circulation evidently could be zero around
Note that the vector remains constant as you // \\ the paths shown. Actually, this is the same
advance in the direction in which it points. K ) field as that in Fig. 2.3 and is a possible
. . < 4 ic fi v
That is, 0Fy/dy = 0, with F, = 0. Hence div F = 0. N4 Slgotrostatic fiend: / AN
Note that the line integral around the dashed path M ’, AN
. - — A k4
is not zero. This is a central field. That is, F is radial r | AN /
and, for given r, its magnitude is constant. ‘ Y \\,
|====n Any central field has zero curl; the circulation H H
1 | is zero around the dashed path, and any other == === Itis not obvious that div F = 0
Y path. But the divergence is obviously not zero. from this picture alone, but you can see that
: | it too could be zero.
—_—————
divF=0 curl F#0 divF=0 curl F=0 divF=0 curl F=0
(d) (e) (H
Note _that there is no change in the Clearly the circulation around the dashed
magnitude of F, to first order, as you ) path is not zero. There appears also to be
advance in the direction F points. For the same reason as in (d), we deduce anonzero divergence, since we see vectors
That is enough to ensure zero diver- that div F is zero. Here the magnitude of F converging toward the center from all
gence. It appears is the same everywhere, so the line integral directions.
that the | ===== circulation over the long ;= —m _ S leg of the path 1 1
could be ! sero around shown is 1 1 not canceled by . 1
the path r shown, for F the integral = | : over the short leg, Y ‘
is weaker y—=——I on the long and the V—==2~ irculation is l :
leg-than on the short leg. Actually, motzeto.  \ N1 47 iTTT=T
this is a possible electrostatic field,
with F proportional to 1/r, where r
is the distance to a point outside
the picture.
divF=0 curl F=0 divE=0 curl F#0 divF #0 curl F#0
Figure 2.40.

Discussion of Fig. 2.39.

integral around any loop would or would not be zero in each picture. That
is the essence of curl. After you have studied the pictures, think about
these questions before you compare your reasoning and your conclusions
with the explanation given in Fig. 2.40.

The curl of a vector field will prove to be a valuable tool later on
when we deal with electric and magnetic fields whose curl is not zero.
We have developed it at this point because the ideas involved are so close
to those involved in the divergence. We may say that we have met two
kinds of derivatives of a vector field. One kind, the divergence, involves
the rate of change of a vector component in its own direction, dF,/dx,
and so on. The other kind, the curl, is a sort of “sideways derivative,”
involving the rate of change of F; as we move in the y or z direction.
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Surface encloses volume

/F-da: /didev

surface volume

OF, 9F, OF,

divF = — 4 —
0x ady 0z
=V.F
Figure 2.41.

Some vector relations summarized.

Curve encloses surface

/A-ds: fcurlA~da

STOKES GRAD
Point

Curve

Curve

Point

Points enclose curve

2 — 1 = fgrad¢'d5

curve surface curve
. . . .0 .0 .0
In Cartesian coordinates, with V=X— +y— +Z—:
ox ay 0z
. [0A; 0A, L0 L 0¢p 00
IA=x|——— d¢ =x— —+z—
ur ( ay 0z ) grad¢ x +y ay + 0z
. [0A, 0A;
_ 2 -V
+y < 9z ox ) ¢
dx ay
=V xA

The relations called Gauss’s theorem and Stokes’ theorem are
summarized in Fig. 2.41. The connection between the scalar potential
function and the line integral of its gradient can also be looked on as
a member of this family of theorems and is included in the third col-
umn. In all three of these theorems, the right-hand side of the equation
involves an integral over an N-dimensional space, while the left-hand
side involves an integral over the (N — 1)-dimensional boundary of the
space. In the “grad” theorem, this latter integral is simply the discrete
sum over two points.

2.18 Applications
As mentioned in Section 1.16, the electrical breakdown of air occurs at a
field of about 3 - 10° V/m. So if you shuffle your feet on a carpet and then



